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Abstract. A simple cubic lattice A of unit spacing with a point of polarisability a at each 
lattice vertex is considered. The response of the lattice to an applied constant electric 
field and to the electric field due to a charged or dipolar impurity is calculated and 
asymptotic representations for the polarisation at lattice points far from the surface of 
the lattice sample and far from the impurities are obtained. Polarisation due to a constant 
applied external field is shown to depend on the shape of the lattice sample and the 
dielectric constant of the medium exterior to the lattice sample. Polarisation due to 
charged or dipolar impurities is shown to be independent of shape and external dielectric 
constant. The asymptotic representations obtained for the polarisation are compared with 
model calculations treating the lattice sample as a continuum dielectric of dielectric constant 
E .  This dielectric constant is found to be E = (1 +8.na/3)/(1-47ra/3) so that the standard 
Lorentz relation between macroscopic and microscopic electric fields is confirmed for all 
the cases considered. For the dipolar impurity case the continuum picture must use a 
rescaled dipole moment which is calculated explicitly. The reaction fields giving this 
rescaled dipole moment are discussed. 

1. Introduction 

The response of dense matter composed of polarisable particles to an external field 
and to the field of a charged or dipolar impurity has been considered by several 
authors. Recently Lehnen and Bruch (1980) have studied the response of a lattice 
of polarisable spheres to a static point charge near a plane surface of the lattice, while 
Smith (1980a) and Wielopolski (1981) have considered the response of such a lattice 
system to a dipole embedded deep within the lattice. These papers considered a fixed 
lattice, ignoring the considerations of statistical mechanics. This approach is of interest 
because the system is a simple model of the response of a static ionic crystal to external 
fields and impurities (Bellemans and Plaitin 1975). Pollock and Alder (1977, 1978) 
and Pollock et a1 (1980) carried out molecular dynamics studies of a dipolar or charged 
impurity in a fluid of spherical Lennard-Jones particles with a point polarisability. 
They were able to predict local fields at large distances from the impurity in terms 
of a continuum picture of the fluid with a dielectric constant. They then used the 
simulation data to consider the way the fluid system responds to the field of an impurity 
by screening that field at short distances from the impurity. Pollock et a1 (1980) 
pointed out that particular care had to be taken with the continuum picture of the 
fluid to be able to predict the local electric field at a point far from the impurity 
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correctly. For the polarisable lattice system, Smith (1980a) and Wielopolski (1981) 
gave expressions for the polarisation density far from a dipolar impurity, but calculated 
a dielectric constant for their system using an incorrect continuum picture of the 
system, thus obtaining an incorrect value for the dielectric constant. This paper is a 
correction and extension of the results of Smith (1980a) and Wielopolski (1981). 

Consider a simple cubic lattice A of unit spacing with a point of polarisability a 
at each lattice vertex with a microscopic electric field f (m)  imposed at each lattice 
site m. The polarisation p ( m )  at site m then satisfies the equation 

The second term on the right-hand side of equation (1.1) is the electric field at m due 
to the dipoles p(n)  at all the other sites of the lattice. Widom (1965) has considered 
general techniques for the solution of equations of the form of equation (1.1) for 
one-dimensional lattices. His considerations imply that because the function 

is bounded for 6 E V = [-T, T ] ~ ,  then if 

C If(m)12<m 
m e A  

standard Fourier transform methods will give the solution 

to equation (1.1) where 

(1.5) 

provided that a is small enough to ensure that [ I  + aT(&)] has a finite inverse for all 
6 E V. The constraint on a is not surprising, since the lattice system may be expected 
to show a polarisation catastrophe for a large enough. While the fields due to a 
charged or dipolar impurity obey the inequality (1.4), a constant external electric field 
will not. In that case, F ( 6 )  is a generalised function proportional to a(&). The solution 
(1.5) will still apply, but care must be taken with T(&) since the lattice sum for it 
(equation (1.3)) is conditionally convergent at 6 = 0. Thus the solution of equation 
(1.1) for an applied field not obeying (1.4) will reflect the shape of the macroscopic 
sample of the lattice concerned, since this shape defines a summation order, and thus 
a value, for T(0) .  

It is necessary then to consider a large sample of the lattice, RN(A) of shape SZ 
defined in the following way. Let 0, be the interior and surface of the closed region 
of R 3  containing the origin and with the surface given by 

= 0. (1.7) 
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The region fl0 has volume IIOoll. The large &shaped sample is then given by 

nN(A)  = {n E A : n / N  E n o }  (1.8) 

with N chosen to be large. The sample f lN(A)  contains N311ilo1I lattice sites. In this 
paper, two sample shapes are considered, a plane slab PN(A), of width 2N and a 
sphere SN(A) of radius N. The region exterior to the sample is considered to be a 
dielectric continuum of dielectric constant E ’ ,  the external dielectric constant. 

In setting up the equations for p ( m ,  E ’ )  in a sample n,(A), care must be taken to 
include any reaction field effects. These effects and the appropriate equations 
(analogous to equation (1.1)) are established in 0 2 of this paper. Section 3 contains 
a discussion of continuum pictures of the systems discussed, in which the lattice sample 
is replaced by a continuum sample of dielectric constant E .  Section 4 derives solutions 
to the equations of D 2 and the paper concludes with a discussion of these solutions 
in 0 5. 

2. Equations for the polarisation 

The polarisation p ( m )  obeys the equation 

rub) = a(m)E(m) (2.1) 
where a ( m )  is the polarisability of the point at m ( a ( m )  = a unless m is the site at 
which an impurity is placed) and E ( m )  is the electric field at m. 

2.1. Plane slab sample PN(A) with constant electric field applied normal to the surface 

The slab occupies the region -N s x s N and the external field is EA = (EA, 0,O) as 
x + f 00. The applied field in the slab is then 

E ( m )  = &‘EA. (2.2) 

The field set up at m due to a dipole p ( n )  at n may now be calculated using the 
method of images and the result expanded for large N. As N + 00 this field is 

(2.3) E(m, n )  = - t (m - n )  a p(n)  

so that for this case 

There is a reaction field term in equation (2.3) which is O(N-3) ,  but even for constant 
solutions to equation (2.5) this reaction field makes a contribution to equation (2.5) 
which is O(N-’) and thus may be ignored. 

2.2. Spherical sample &(A) with constant electric field applied 

The sphere occupies the region Irl S N and the external field is EA as Irl+ 00. The 
field applied to sites inside the sample is then 

3 E I  E ( m )  = - 
2Ef+ 1 EA* (2.5) 
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The field at m due to 
O(IV-~) ,  but this must 
will be shown in § 4, it 
is then 

a dipole p ( n )  at n contains a reaction field part which is also 
be included in the equation for p ( m ,  E ' )  for this case since, as 

: can contribute to the solution. The net field at m due to p(n)  

2 ( & ' -  1 )  
(2E'+ l )N  3 d n ) .  E(m,  n) = - t ( m  - n )  p ( n ) +  (2.6) 

Thus the polarisation equation is 

Since &(A) contains 47rN3/3 lattice sites, it can be seen that for a solution p ( m ,  E ' )  = 
P ( E ' ) ,  a constant, the reaction field term will contribute. 

2.3. Sample with the point at m = 0 replaced by a point of polarisability a' = a (1 + w )  
and bearing a charge Q 

The direct field due to the charge Q is 

E ( m )  = Qmlml-3(1 -S, ,o).  (2 .8)  

This gives a square summable (i.e. obeying inequality (1.4))  inhomogeneous term in 
the equation for p ( m ) .  Widom's analysis shows that the solutions to equations of the 
form (1.1) are also square summable so that reaction fields do not contribute to the 
solution as N -*CO for any shape 42 of sample. Thus the equation for p ( m )  is 

Notice that this is not as simple as equation (1.1) whenever w f 0. Nonetheless, the 
method of Fourier transform together with a method used by Wielopolski (1981) can 
be used to give solutions for p ( m ) .  

2.4. Sample with the point at m = 0 replaced by a point of polarisability a' = a (  1 + U )  

and bearing a dipole moment U 

The direct field due to the dipole U is 

E ( m )  = - t ( m )  * U (2.10) 

and so the polarisation satisfies 

p ( m )  = - a t ( m )  * v -a 1 t ( m  -n) p ( n )  --(YOS,,,.~ 1 t ( m  - n )  * p ( n )  (2.11) 

with reaction fields being ignored as in the charged impurity case and for the same 
reasons. 

n e A  n e A  

3. Continuum pictures of lattice polarisation 

In this section the lattice sample is supposed to be a continuous medium of dielectric 
constant E. 
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3.1. Plane slab sample with constant field applied normal to the slab surface 

The field at r inside the sample is 

E )  
E(r )  = - E A  

E 

and the polarisation density is 

(3.1) 

(3.2) 

3.2. Spherical sample with constant field applied 

Here standard methods using spherical harmonics (Bottcher 1973) give for the field 
at r inside the sample 

3EI 
2 E I + E  

E ( r )  = - EA 

with polarisation density 

3(E - 1)E' 
EA. p ( r )  = 4 7 ~ ( 2 ~ ' +  E )  

(3.3) 

(3.4) 

Notice that from these results it can be seen that the polarisation density depends on 
sample shape and external dielectric constant. The solutions to equations (2.4) and 
(2.7) may then be expected to show similar dependence. This shape and external 
dielectric constant dependence of p ( r )  does not occur for a charged or dipolar impurity 
in the limit as the sample becomes large, as may be checked by constructing explicit 
solutions by the method of images for the plane slab case or spherical harmonic 
expansions for the spherical case. 

3.3. Sample with charge Q* at centre 

The electric field at r is 

E ( r )  = ~ * r / ~ l r / ~  

with polarisation density 

p ( r )  = (E - l )Q*r /47~slr1~.  

3.4. Sample with dipole v* at centre 

The electric field at r is 

E ( r )  = - s - ' t ( r )  v* 

with polarisation density 
E - 1  
4 7TE 

p ( r )  = -- t ( r )  v*. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

These results for polarisation density may be compared with solutions to the equations 
for p ( m )  in the lattice, since the unit cell of the lattice has unit volume, so that p ( m )  
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is a polarisation density. Such a comparison for the constant field case will enable 
the dielectric constant E ’  to be evaluated. It may be expected that the symmetry of 
the charged impurity case will allow an interpretation with Q* = Q, since there should 
be no electric field on the polarisable point at m = O .  On the other hand, for the 
dipolar impurity case there will be an electric field on the polarisable point at m = 0, 
so that a continuum picture of this case is not expected to use v* = v. This is indeed 
the case, as is discussed in § 5 .  

4. Solution of polarisation equations 

These equations are solved by taking Fourier transforms, with 

with inverse 

(4.2) 

A useful function is 

Y(&) = T(&) * M ( 5 )  (4.3) 

with inverse y ( n ) .  The Fourier transform of f ( m ) =  1 is ( ~ T ) ~ S ( & ) .  ,The Fourier 
transform of t ( n )  is shape dependent if N&=O(l).  For N&=O(N)  the Fourier 
transform 

n ZO 

(4.4) 

(4.5) 

m +O 

Here erf(x) is the error function, erfc(x) the complementary error function, R is the 
lattice reciprocal to A (and equal to A for this simple cubic case) and g is an arbitrary 
parameter. This representation of Tn(&) is used since the lattice sums are absolutely 
and rapidly convergent so that T&) may be computed without much difficulty. Note 
that the lattice sums are analytic in the components of & and that since ? ( - n ) =  
t l n ) ,  Tn(&) is an even function of &. Thus for small & 

Tn(&) = -VV*dr, 0)lr=0+ 47r &&/&’+ O(&’) (4.7) 

and this is shape independent. 
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On the other hand, for N& = 0(1) ,  T&) is shape dependent. De Leeuw et af 
(1980) give for the spherical case 

2-s(&) = -VVP&, O)(,=O + $TI + 0(t2) 

Tp(&)=-vv'P~(f, 0 ) l r = o + 4 d + o ( & 2 )  (4.9) 

(4.8) 

while for the plane slab case, Smith (1981) gives 

where S is the matrix 

Further 

(4.10) 

-3nynz . 

(4.1 1) 
I -3n,ny -3n,n, 

-3nynz n: + n :  -2xZ 

2 T ~ ( o ) =  ( n : + n : + n , )  -3n,ny n: +nZ - 2 x y  2 -s /2  

n €SN (A) 
n +O -3n,n2 

The region S N ( A )  is symmetric in each of the components of n and SO 

Ts(0) = 0. (4.12) 

Thus 

- v v * E ( f ,  O)lr=O= -$TI (4.13) 

so that for N& = 0(1) ,  

Ts(5) = 

Tp(&)= - $ T I + ~ T S + O ( & ~ ) .  

while 

Finally consider 

(4.14) 

(4.15) 

There is no difficulty at & = 0 for this case since the oddness of the summand ensures 
C(0) = 0. Note that C(&) is an odd function of 5. Further Smith (1980b) gives 

C(&) = -V*E(~, & ) I r = 0 + 4 ~ i & / & ~  (4.17) 

for N& = O ( N )  and thus 

U S )  = 4 ~ i ( & / & ~ > ( 1  + O(&'N. (4.18) 

It is now possible to proceed to the solution of the polarisation equations by using 
the convolution formula 
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4.1. Plane slab with external field EA = (EA,  0,O) applied 

For this case the polarisation equation is given by equation (2.4) which has the Fourier 
transform 

(4.20) ~ ( 6 ,  E ’ )  = LXE’EA - ( 2 . r r ) 3 6 ( & ) - f f ~ p ( & )  M(&, E ’ ) .  

This equation may be solved for M(&)  and the inverse taken to give 

p ( m ,  E ’ )  = a ~ ’ [ ~ d ~ & [ I + n T ~ ( & ) ] - ~  EA exp(-i& - m)S(&).  (4.21) 

It can be seen that the delta function in the integrand probes the nature of T&) for 
N&=O( l ) .  Thus the form of equation (4.15) applies. The matrix [ I+aTp(&)]  is 
diagonal for 6 = 0 so that it may be easily inverted to give 

CY&’ 

1 +2x p(m,E ’ )= -  EA (4.22) 

where x = 4 7 ~ 4 3 .  This solution will break down for m close to the edge of P N ( A )  
because in fact the delta function used here should be 

(4.23) 

While this acts as a delta function ( ~ T ) ~ S ( & )  for large N in the integrand in equation 
(4.21) when m = 0 ( 1 ) ,  if m = O ( N )  (i.e. near the edge of P N ( A ) )  it will not act as 
( 2 ~ ) ~ 6 ( & ) .  Details of the polarisation near the edge of the slab may be found in Smith 
(1980b). 

4.2. Spherical sample in an applied field 

Equation (2.7) for the polarisation in this case may be written 

p ( m ,  E ‘ ) = F - ~  C t ( m  - n )  - p ( n ,  E ‘ )  
n € S N ( A )  

with 

3LYE‘ 2ff ( E ’  - 1 )  
F=- C p ( n ,  E ‘ )  2&’+ 1 EA+(2E’+  1 ) ~ 3  n E S N ( A )  

and solution 

p ( m ,  E ’ )  = [ d3&[I+aTs(&)]-* * Fa(&) exp(-i& - m ) .  

The appropriate form for Ts(&) is given by equation (4.14) so that 

V 

p ( m ,  E ’ )  = P ( E ’ )  = F. 

Substituting this result into equation (4.25) for F gives 

3 a s ‘  2x (E ’ -1 )  - 
P ( E ’ ) = -  P ( E ’ ) .  2 & ’ + 1  EA+ 2 & ’ + 1  

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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Hence 

except close to the boundary of &(A) 

4.3. Sample with charge Q at m = 0 

The Fourier transform of equation (2.9) is 

Note that 

2565 

(4.29) 

(4.30) 

(4.31) 

Thus, multiplying equation (4.30) by T ( f ) ,  solving for Y ( f )  and taking the inverse 
transform, 

Since T ( f )  is even in f while C ( f )  is odd in f ,  equation (4.32) has the solution y ( 0 )  = 0 
and so 

(4.33) 

For Iml large, an estimate of p ( m )  with error O(lml-2) with respect to the estimate 
may be obtained by using the leading-order expansions of T ( f )  and C ( f )  for small f .  
Now 

aQ 
p ( m )  = 7 I d36[1 + aT(f)]- '  - C(& exp(if m ) .  

(2.rr) v 

I + a T ( f ) = ( l  - ~ ) 1 + 3 ~ f f / f ~ + O ( f ~ )  (4.34) 

so that 

%+ O(f2)  
1 3x [I+aT(f)]- '=--1- 

1 - x  (1 - x ) ( l + 2 x )  f 2  

Thus for the charged impurity case 

(4.35) 

(4.36) 

(4.37) 

(4.38) 
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4.4. Sample with dipole v at m = 0 

Equation (2.1 1) has Fourier transform 

M ( 6 )  = -aT(&) v - aT(6) * M ( 6 )  - awy (0). (4.39) 

By the procedure used to find y ( 0 )  for the charged case, it can be shown that 

y(0) = -aP(w, a) ' v (4.40) 

where 

Thus, the equation for M(&) may be solved to give 

p ( m )  = - v 8 , , , , 0 + 4  I d3&[I+aT(&)]-' exp(-i& m )  [ I+a2wP(o ,  a)] * v. 

(4.42) 

Except at m = 0, the only change introduced by setting w # 0 is that the dipole v is 
replaced by a dipole 

(4.43) 

(2.rr) v 

v(w,  a) = [I + aZwP(w,  a)] . v. 
For Im I large, the solution may be expanded using 

so that for Iml large, 

a 
t ( m )  v ( w ,  a). 

(1 -x) ( l  + 2 x )  cc(m)= - 

It is also important to note that 

5. Discussion 

(4.44) 

(4.45) 

(4.46) 

First it is of interest to compare the solutions of the polarisation equation in the 
applied external field case equation (4.23) (for a plane slab) and equation (4.29) (for 
a spherical sample) with the polarisation densities from the continuum picture given 
by equation (3.2) (for a plane slab) and equation (3.4) (for a spherical sample). 
Comparison of appropriate solutions shows that they are identical for all E '  with 

E =(1+2x) / ( l -x )  (5.1) 

( E  - 1 ) / 4 ~  = ( E  + 2). (5.2) 

the standard Clausius-Mossotti result. Note that this expression for E gives 

Thus, since the microscopic field is @ ( m ) / a  while the macroscopic field is given by 
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4 r p ( m ) / ( ~  - l), the microscopic and macroscopic electric fields are related in all cases 
by 

(5.3) Emicro(m) = $(E  + 2)~macro(m) 
the standard Lorentz relation linking the microscopic and macroscopic fields. This 
solution for E will also ensure that equation (4.38) for the polarisation in the lattice 
responding to a charge 0 agrees precisely at large /ml with the polarisation of a 
continuum dielectric responding to a charge Q, given in equation (4.38). Thus, under 
a wide range of circumstances, the large-scale response of the system (both the 
polarisation and the relation between macroscopic and microscopic fields) is given by 
a continuous medium picture using equation (5.1). It is useful to have some confidence 
in equation (5.1) because the relation between the continuous medium polarisation 
density of equation (3.8) and the lattice polarisation of equation (4.45) is not simple. 

The two expressions are identical with 

v*=$(E+2)(1+wa2P(W,a))' Y. (5.4) 

Y (0) = v + p (0) ( 5 . 5 )  

It is useful to consider the net dipole at m = 0, which is 

and 

(5.6) 

The polarisation of the lattice by the original dipole v produces a lattice reaction field 
R at m = 0 given by 

(5.7) 

One method for investigating the lattice reaction field is to use the approximation 

(5.8) 

R = a'-'(v(O) - v). 

This reaction field gives the net dipole ~ ( 0 )  at m = 0. 

T (6) = - &I + 4 r&/&' 

in the expressions for R. Some tedious algebra gives 
8 jrxv R =  

1 + x  -2x2(1 + w )  * 

On the other hand, a direct power series expansion (in powers of a) gives 

(5.9) 

(5.10) 

Since the lattice sum here is a multiple of the unit matrix and 

1 C ~ = 8 . 4 0 0 6 3  (5.11) 
n c A  In1 

R = 16.80126av +O(a2) (5.12) 
and the approximate result (5.9) has a first term in its x expansion which is in error 
by a factor of approximately 2. 

Perhaps the most important result here is not the precise details of the lattice 
reaction field, but equation (5.4) which gives the rescaled dipole moment v* which 
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must be used in a continuous medium picture to give the correct polarisation at 
distances far from the defect. Making a continuous system model without an exact 
microscopic picture of the system can be difficult as it will usually involve guesses at 
the properties of some polarisable sphere whose diameter must be chosen in an 
arbitrary fashion. The solution of the polarisation equations for a dipolar defect makes 
life somewhat simpler, since they give a precise prescription for evaluating v* from 
v and hence the polarisation in the lattice far from a dipolar defect. Presumably, 
similar considerations apply in considering the response of an ionic crystal to a charged 
or dipolar defect. Work on these considerations is in progress. 
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